NCS20210607项目第二次模拟测试卷

理科数学参考答案及评分标准

一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案	В	D	A	A	В	C	В	D	C	A	D	C

二、填空题: 本大题共 4 小题, 每小题 5 分, 满分 20 分.

13.
$$(-\frac{4}{5},\frac{3}{5})$$
 14. 108 15. $a \in (-\infty,-1]$ 16. $\frac{1}{2}$ 三. 解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17 题-21 题为必考题,每个试题考生都必须作答.第 22 题、23 题为选考题,考生根据要求作答.
17. 【解析】(I)由 $\sin A = \cos B$, A 为钝角,所以 $A - B = \frac{\pi}{2}$; 3分 因为 $C = 2B$, $A - B = \frac{\pi}{2}$, $A + B + C = \pi$, $A = \frac{3\pi}{4} - \frac{C}{2}$, $A = \frac{\pi}{4} - \frac{C}{2}$,所以 $A = \frac{\pi}{4}$; 6分 (II)由(I)知 $A = \frac{\pi}{4}$,所以 $A = \frac{5\pi}{8}$, $A = \frac{\pi}{8}$; 8分 由正弦定理知: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,所以 $A = 4\sin\frac{5\pi}{8}$, $A = 4\sin\frac{\pi}{8}$, $A = 4\sin\frac{\pi}{8}$ 10分 $A = \frac{1}{2}ab\sin C = 8\sin\frac{5\pi}{8}\sin\frac{\pi}{8}\sin\frac{\pi}{4} = 8\cos\frac{\pi}{8}\sin\frac{\pi}{8}\sin\frac{\pi}{4} = 4\sin^2\frac{\pi}{4} = 2$ 12分

18. 【解析】(I)证明:因为折叠前 $BD \perp AC$,所以 $AC \perp BE$, $AC \perp DE$,

(II)由(I)知,平面DBE 上平面ABC,

1。当点D在面ABC内的投影O落在 ΔABC 内时,

因为 AB = 4 , $\angle ABC = \frac{2\pi}{3}$, 所以 $CE = AE = 2\sqrt{3}$, DE = BE = 2 ,

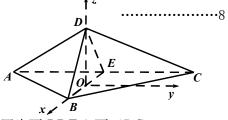
则 BO = OE = 1, 如图所示,建立空间直角坐标系,则 B(1,0,0), $D(0,0,\sqrt{3})$,

$$C(-1,2\sqrt{3},0)$$
, $E(-1,0,0)$, $\bigcirc \overrightarrow{CD} = (1,-2\sqrt{3},\sqrt{3})$, $\overrightarrow{BC} = (-2,2\sqrt{3},0)$,

设平面 BCD 的法向量为 $\overrightarrow{n_1} = (x, y, z)$,则 $\begin{cases} -2x + 2\sqrt{3}y = 0 \\ x - 2\sqrt{3}y + \sqrt{3}z = 0 \end{cases}$

则 $\vec{n} = (\sqrt{3}, 1, 1)$,

因为平面 BCE 的法向量为 $\vec{n}_2 = (0,0,1)$,



 2° 当点 D 在面 ABC 内的投影 H 落在 $\triangle ABC$ 外时,因为面 BDE 上面 ABC, 所以点H在BE的延长线上, $Rt\Delta DHE$ 中,DE=2, $DH=\sqrt{3}\Rightarrow HE=1$.

如图以E为原点,EB,EC 所在直线分别为x轴,v轴,建立空间直角坐标系,

则 B(2,0,0), $C(0,2\sqrt{3},0)$, $D(-1,0,\sqrt{3})$, E(0,0,0),

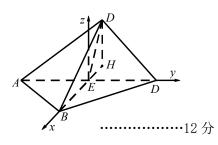
所以
$$\overrightarrow{DB} = (3,0,-\sqrt{3}), \overrightarrow{BC} = (-2,2\sqrt{3},0),$$

设平面
$$DBC$$
 的法向量为 $\overrightarrow{m_1} = (x_1, y_1, z_1)$,由 $\left\{ \overrightarrow{m_1} \cdot \overrightarrow{DB} = 0, \atop \overrightarrow{m_1} \cdot \overrightarrow{BC} = 0 \right\}$ 得到 $\left\{ 3x_1 - \sqrt{3}z_1 = 0, -2x_1 + 2\sqrt{3}y_1 = 0, \right\}$

而平面 BCE 的一个法向量为 $\overline{m}_2 = (0,0,1)$,

$$\cos < \overrightarrow{m_1}, \overrightarrow{m_2} > = \frac{\overrightarrow{m_1} \cdot \overrightarrow{m_2}}{|\overrightarrow{m_1}| \cdot |\overrightarrow{m_2}|} = \frac{3}{\sqrt{3+1+9} \times 1} = \frac{3\sqrt{13}}{13}$$

所以二面角
$$D-BC-E$$
 的余弦值为 $\frac{\sqrt{5}}{5}$ 或 $\frac{3\sqrt{13}}{13}$

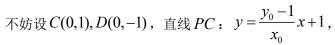


19. 【解析】(I) 由题:
$$\frac{c}{a} = \frac{\sqrt{3}}{2}$$
, 且 $\frac{1}{2} \cdot 2a \cdot 2b = 4$, 又 $a^2 - b^2 = c^2$,

所以a = 2, b = 1,

所以椭圆的方程为 $\frac{x^2}{4} + y^2 = 1$5 分

(II) 设
$$P(x_0, y_0)$$
, 则 $\frac{{x_0}^2}{4} + {y_0}^2 = 1$ 即 $x_0^2 = 4(1 - {y_0}^2)$,



20. 【解析】(I)(i)记事件 A为"甲答对了某道题", 事件 B为"甲确实会做",

则
$$X \sim B(4, \frac{3}{5})$$
 , $P(X = k) = C_4^k (\frac{3}{5})^k (\frac{2}{5})^{4-k} (k = 0, 1, 2, 3, 4)$,

则 X 的分布列为

X	0	1	2	3	4
P	16	96	216	216	81
	625	625	625	625	625

(II) 记事件 A_i 为"甲答对了i 道题", 事件 B_i 为"乙答对了i 道题",其中甲答对某道题的概率为 $\frac{1}{2} + \frac{1}{2}p = \frac{1}{2}(1+p)$,答错某道题的概率为 $1 - \frac{1}{2}(1+p) = \frac{1}{2}(1-p)$

$$\begin{split} & \text{ } \mathbb{P}(A_1) = C_2^1 \cdot \frac{1}{2} (1+p) \cdot \frac{1}{2} (1-p) = \frac{1}{2} (1-p^2) \;, \quad P(A_2) = [\frac{1}{2} (1+p)]^2 = \frac{1}{4} (1+p)^2 \;, \\ & P(B_0) = (\frac{1}{3})^2 = \frac{1}{9} \;, \quad P(B_1) = C_2^1 \cdot \frac{2}{3} \cdot \frac{1}{3} = \frac{4}{9} \;, \end{split}$$

所以甲答对题数比乙多的概率为

$$P(A_1B_0 \cup A_2B_1 \cup A_2B_0) = P(A_1B_0) + P(A_2B_1) + P(A_2B_0)$$

$$= \frac{1}{2}(1-p^2) \cdot \frac{1}{9} + \frac{1}{4}(1+p)^2 \cdot \frac{4}{9} + \frac{1}{4}(1+p)^2 \cdot \frac{1}{9} = \frac{1}{36} \cdot (3p^2 + 10p + 7) \ge \frac{15}{36}$$

21. 【解析】证明: (I) $f'(x) = \sin x + x \cos x - \frac{a}{x}$ 由题 $f'(\frac{\pi}{2}) = 1 - \frac{2a}{\pi} = -1$,所以 $a = \pi$. 故 $f(x) = x \sin x - \pi \ln x$, $f'(x) = \sin x + x \cos x - \frac{\pi}{x}$, 方法一: $f'(x) = \sin x + x \cos x - \frac{\pi}{x} < \sin x + \tan x \cdot \cos x - \frac{\pi}{x} = 2 \sin x - \frac{\pi}{x}$ $\Rightarrow g(x) = 2\sin x - \frac{\pi}{x}$, 知 g(x) 在 $x \in (0, \frac{\pi}{2})$ 单调递增, 所以 $g(x) < g(\frac{\pi}{2}) = 0$, 也即 f'(x) < 0, 所以 f(x) 在 $x \in (0, \frac{\pi}{2})$ 上单调递减, $f(x) > f(\frac{\pi}{2}) = \frac{\pi}{2} - \pi \ln \frac{\pi}{2} = \frac{\pi}{2} (1 - \ln \frac{\pi^2}{4}) > 0$ 所以, 在 $x \in (0, \frac{\pi}{2})$, f(x) > 0得证; 方法二: $f'(x) = \sin x + x \cos x - \frac{\pi}{x} < x + x \cdot \cos x - \frac{\pi}{x} = x(1 + \cos x - \frac{\pi}{x^2})$, 令 $h(x) = 1 + \cos x - \frac{\pi}{x^2}$, $h'(x) = -\sin x + \frac{2\pi}{x^3}$, 知 h'(x) 在 $x \in (0, \frac{\pi}{2})$ 单调递减, 所以 $h'(x) > h'(\frac{\pi}{2}) = \frac{16}{\pi^2} - 1 > 0$, 知 h(x) 在 $x \in (0, \frac{\pi}{2})$ 单调递增, 所以 $h(x) < h(\frac{\pi}{2}) = 1 - \frac{4}{\pi} < 0$,也即 f'(x) < 0, 所以 f(x) 在 $x \in (0, \frac{\pi}{2})$ 上单调递减, $f(x) > f(\frac{\pi}{2}) = \frac{\pi}{2} - \pi \ln \frac{\pi}{2} = \frac{\pi}{2} (1 - \ln \frac{\pi^2}{4}) > 0$, 所以, 在 $x \in (0, \frac{\pi}{2})$, f(x) > 0得证; 方法三: $f'(x) = \sin x + x \cos x - \frac{\pi}{x} = \sqrt{1 + x^2} \sin(x + \varphi) - \frac{\pi}{x}$ 因为 $\sin(x+\varphi) \le 1$, $f'(x) \le \sqrt{1+x^2} - \frac{\pi}{x}$, 设 $g(x) = \sqrt{1+x^2} - \frac{\pi}{x}$, 显然g(x)在 $x \in (0, \frac{\pi}{2})$ 单调 递增, $g(x) = \sqrt{1+x^2} - \frac{\pi}{x} < \sqrt{1+\frac{\pi^2}{4}} - 2 < 0$, 所以 f'(x) < 0, -----4分 所以 f(x) 在 $x \in (0, \frac{\pi}{2})$ 单调递减,故 $f(x) > f(\frac{\pi}{2}) = \frac{\pi}{2} - \pi \ln \frac{\pi}{2}$,因为 $\ln \frac{\pi}{2} < \frac{1}{2}$, 所以 $f(x) > f(\frac{\pi}{2}) = \frac{\pi}{2} - \pi \ln \frac{\pi}{2} > 0$.

```
( | | | ) \leq n \in \mathbb{N}, n \geq 2 \text{ by }, \frac{\pi}{2} + \frac{1}{n} \in (0, \frac{\pi}{2}) 
因为\frac{\pi}{2} + \frac{1}{\pi} > 1 + \frac{1}{\pi},所以\sin(\frac{\pi}{2} + \frac{1}{\pi}) > \sin(1 + \frac{1}{\pi}),
则 \frac{n+1}{n}\sin(\frac{\pi}{3}+\frac{1}{n}) > \frac{n+1}{n}\sin(1+\frac{1}{n}), 由 (1) 知: x \in (0,\frac{\pi}{2}) 时, x\sin x > \pi \ln x,
所以 \frac{3}{2}\sin(\frac{\pi}{3}+\frac{1}{2}) > \pi \ln \frac{3}{2}, \frac{4}{3}\sin(\frac{\pi}{3}+\frac{1}{3}) > \pi \ln \frac{4}{3}, \dots, \frac{n+1}{n}\sin(\frac{\pi}{3}+\frac{1}{n}) > \pi \ln \frac{n+1}{n}
22. 【解析】(I) 由 x = \rho \cos \theta, y = \rho \sin \theta 知:
曲线 C_2 的极坐标方程为 \rho^2 \sin \theta \cos \theta = \sqrt{3};
曲线 C_1 的普通方程为 x^2 + v^2 = 4.
不妨设 A(1,\sqrt{3}), B(\sqrt{3},1), C(-1,-\sqrt{3}), D(-\sqrt{3},-1), 由图可知四边形 ABCD 为矩形,
AB = \sqrt{2}(\sqrt{3} - 1), BC = \sqrt{2}(\sqrt{3} + 1),
所以四边形面积 S = AB \cdot BC = 4.
                                                                         .....10 分
23. 【解析】( I ) f(x) = |x-a+1| + |x+b-1| \ge |x-a+1-(x+b-1)| = |a+b-2|, ……3 分
因为a,b \in (0,1), 所以f(x) \ge 2-a-b, 当a-1 \le x \le 1-b时取到最小值2-a-b,
所以c = 2 - a - b即a + b + c = 2;
(II) 因为a+b+c=2,所以(a+b+c)^2=4即a^2+b^2+c^2+2ab+2bc+2ac=4, ……7 分
因为b^2 + c^2 \ge 2bc,所以a^2 + b^2 + c^2 + 2ab + 2bc + 2ac \ge a^2 + 2bc + 2ab + 2bc + 2ac即
a^2 + 2ab + 4bc + 2ac < 4.
```